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ABSTRACT

An instrumentation and experimental technique for the measure-

ments of electrical resistivity and the Hall effect at elevated tempera-

tures is described. These two temperature-dependent properties are

uniquely determined for non- isothermal conditions and thereby are evalua-

tions at computed average temperatures within the specimens. The re-

sults of this investigation of cuprous sulfide and bismuth telluride in

the temperature range from 290°K to 670°K are presented and compared

with known published data. Resistivities are determined from measure-

ments of potential differences between selected points along the current

path through the specimens, while Hall effects are presented in terms

of the Hall coefficient, R , evaluated by Hall's equation
8
V^ = f\i UcL .

" d

Both cuprous sulfide and bismuth telluride show resistivities on

-3
the order of 10 ohm centimeters, characteristic of semiconductor

materials, while the Hall coefficient for cuprous sulfide is estab-

lished at values less than 0.179 cubic centimeters per coulomb, and

the Hall coefficient for bismuth telluride decreases continuously with

increasing temperature from about 0.5 cubic centimeters per coulomb.

The instrumentation and investigation was conducted at the U. S.

Naval Postgraduate School, Monterey, California, during the winter and

spring of 1961.
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1. Introduction

For any homogeneous conducting material of constant cross-section,

whose ends are equipotential surfaces, and in which the cross-sectional

dimensions are small in comparison with the length of the conductor, the

resistance to the flow of a continuous and uniformly distributed electri-

cal current is expressed as

R=/>^- (U)

and conductance as

W= /0 l_
" L (IB)

where K = electrical resistance

-- = length of the conductor

/\ = cross-sectional area

= resistivity

j = electrical conductance

O" conductivity

Metals are characterized by their high electrical conductivities; that

is, they transmit large electrical currents under the influence of small

differences in potential due to the presence of free electrons „ The

resistivity of metals also depends on the temperature, being roughly

proportional to the absolute temperature, and increases with increase

in impurity content. Whereas it is characteristic of metals that re-

sistance increases with increasing temperature and with decreasing

purity, a class of substance exists, both in crystalline and non-crystal-

line forms, for which the opposite is the case. This class is known as

1





semiconductors, in which conductivity increases with temperature in

accordance with an exponential law of the form

£
c-4><r ~ cr

,

(2)

where CT. and <>, are constants.

No exact demarcation exists between the resistivity of metals and

semiconductors, and semiconductors and insulators - a third class of mat'

erials. J. N. Shive 1 10 I states 10 " ohm centimeters and 10 ohm

centimeters, respectively, as delineating values between the three

general classes of materials. Those materials possessing semiconduct-

ing properties, with resistivities in the somewhat arbitrary range of

-3 10
10 ohm centimeters to 10 ohm centimeters, are being examined with

special and renewed interest toward improved thermoelectric power pro-

duction on an economical basis. Basic properties required for one such

evaluation of thermoelectric materials are:

the Seebeck coefficient (or thermoelectric power), >0 ,

the specific electrical resistivity, ,3 , and

the specific thermal conductivity, K

These three quantities are all functions of temperature and are combin-

ed to form a "figure of merit", 2 » as follows:

L V* (3)

The "figure of merit" has no intrinsic value but does afford means by

which approximate comparisons of materials can be made. Clearly, mater-

ials of lower resistivity tend to produce a higher "figure of merit".

Number in brackets designate references to Bibliography,





A maximum efficiency of power delivery of the special thermoelement

circuity for Peltier heating and cooling, as described by Ioffe jo] ,

is achieved for a maximum value of Zi.

Another application of resistivity data is disclosed by the funda-

mental equation:

0~ = rn e/-< (4A)

where <J~ = electrical conductivity

rc\ = number of charge carriers

= charge of the carrier

yCA = mobility of the carriers

This simplified equation presupposes that the type of current carrier

is either electrons or "holes". In essence, the expression predicts

the conductivity as a function of the number of electrons or "holes'Jper

unit volume, the charge of the electron (or "hole"), and the ease of move-

ment of the electrons (or "holes") in an electric field. In the event

that both types of carriers are present in a material and both contribute

to conductivity, the total effect is the sum of the individual contribu-

tions as explicitly shown by equation (4A) above. Thus
s

<r^- = m~ \ e
|

yuT + m4
1 e l^u.

+
(4B)

where <j~l, - total electrical conductivity

CC\" - number of electron carriers

(X\ - number of "hole" carriers

j^l = absolute charge

M- = mobility of electrons

J^A* m mobility of "holes".

This mixed type of conductivity is not commonly found in semiconductors

but does appear in some metals.
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Electrical conductivity data coupled with mobility evaluations

readily permit calculations of the concentration of carriers of semi-

conducting materials. However, conductivity is dependent not only on

the two aforementioned carrier types, but also on a third mode of charge

transport which is an inherent property of some materials. Conduction of

the electronic type, just described, dominates in most materials, but in

some, ionic conduction , or conduction by atomic imperfections, predomin-

•

ates. This mode is the transport or drift of charged ions under the in-

fluence of an electric field - not unlike conduction in a liquid electro-

lyte. Hannay 3 states that in some substances ion carrier densities

22
are intrinsically high - on the order of 10 ions per cubic centimeter,

where, for comparison, densities of electronic carriers in bismuth tel-

19
luride are on the order of 10 carriers per cubic centimeter. Further,

ionic conductivity can be expressed in the»same parameters as electronic

conductivity in equation (4A)

.

Mobility is defined as the statistical average drift velocity which

a carrier acquires in the direction of an electric field of one volt per

centimeter 3,10] . The actual path of a particle carrier is not a

straight line but random and jerky, characterized by Brownian movement,

caused by collisions with other particles of the atomic lattice, and

other foreign particles of the nature of impurities and inclusions.

Of necessity, a specific value for mobility must be a statistical average

of many particles having various mean free path lengths and various ther-

mal kinetic energies. Specifically, mobility is directly proportional to

the length of the mean free path and inversely proportional to the square

root of the absolute temperature. [lOJ

4





It should be pointed out that two types of carrier mobility ex-

ist and are distinguished by the terms "Hall mobility", and "drift

mobility" which is "conductivity mobility". As Shive [lOJ well de-

scribes;, and is quoted:

In such cases the particles being measured by the time -transient
drift mobility method are believed to spend a significant frac-

tion of their time in localized trapping centers in the crystal
lattice. According to this picture, a carrier particle is local-

ly attached to such a trap for a random interval of time. At the
end of this interval it is released into the current stream where
it executes a number of free paths, making a number of collisions,
and drifts along for a short distance in the electric field. Soon-
er or later the particle becomes trapped by another trapping center
farther on, then it is released again, etc. The particle is thus
free to drift in the field only during random intervals of trap-
pings. The mobility measured under these circumsf-ances will natural-
ly be lower than the 'true' mobility of the particle when it is free.

On the other hand, the Hall mobility gives the mobility of the free

particles on the fly.

"Hall mobility" evolved from original work in 1879 by E. H. Hall

who discovered that, in some materials, a measurable potential differ-

ence appeared normal both to the direction of current flow and to the

direction of a magnetic field. More precisely, if a current is flowing

longitudinally through a material specimen in the X direction (Fig. 1)

and is within a magnetic field in the Y direction, a potential gradient

will appear transversely in the 7 direction. The Hall voltage equality

follows as

VH - K w 4 (5)

where V^ = Hall voltage

I = electric current

H m magnetic field

O s thickness of material

5





The magnitude of the Hall voltage as measured at the surface of the

specimen is directly proportional to the magnitudes of both the current

Fig. 1 Hall effect

and the magnetic field and inversely proportional to the specimen di-

mension in the direction of the magnetic flux. Experimental data for

these parameters permit evaluation of the Hall coefficients R^.

Hall mobility, as a function of electrical conductivity and the

Hall coefficient, results in the expression

/* H - ®~ R H (6)

A relationship between the Hall coefficient and the carrier concen-

tration may be established in the following way. Electric current de-

fines an electric charge in motion. The rate at which a quantity of

electricity flows past a given point in a circuit determines the magni-

tude of the current, that is, (refer Fig. 1 above).

6





I = m e U" tad (7)

where U~ - average drift velocity in X direction

n - cross-section dimension in Y direction

O - cross-section dimension in Z direction

In the examination of the balance of forces to which a charged parti-

cle is subjected, at steady state conditions, the Hall potential result-

ing from the build-up of charge at the surfaces must be equal to the

magnetic force in the direction of the Hall potential. Thus,

eu*H „ c ^h—
V. <«>

where C" is the velocity of light. The combination of (7) and (8)

produces

H Crr\ed (9)

A comparison of (9) and (5) discloses that

R 44 = r- (10A)H Cone.

which establishes the relation between the Hall coefficient and the

carrier concentration. Of course R^ will assume a negative or positive

value depending upon the sign of the charge. It should be understood

that R^ varies with temperature because of the temperature dependence of

the carrier concentration.

R^, as evaluated by Hall's voltage equation (5), is based on a uni-

form drift velocity of carriers, a long-time average of instantaneous

values superimposed on random thermal motions. Equation (10A) is modified





to account for the averaging of the actual drift velocity over all such

thermal velocities, as follows,

' H " seme (iob)

The modified Hall coefficient is derived by Seitz 9





2. Instrumentation and Experimental Method

Because electrical conductivity and the Hall coefficient are

essential to the evaluation of carrier mobility in the manner previous-

ly described, good experimental procedure dictates that pertinent and

necessary data be taken simultaneously over the range of temperatures

for which properties are desired, for the following reasons;

(a) "aging" of the specimen (loss of current carriers with time)

(b) heat treatment effects

(c) change in impurity concentrations

(d) oxidation at prolonged elevated temperatures

(e) structural changes

This concept forms a basis of instrumentation.

Published works dealing with earlier investigations of resistivity

and Hall effect at elevated temperatures report the use of small electric

furnaces of non- ferromagnetic materials for temperature control,, The more

modern equipment incorporates an electromagnet built into a specially con-

structed oven. The present study employed a simple radiant-type heater

unit of 28 gage Nicrome wire wound non- inductively along a short length of

slotted Vicor tubing (See Fig. 3, page 11.)

Temperature determinations (see Appendix II) were deduced from three

thermocouple readings taken at the ends and midpoint of the specimens.

The specimen was held firmly in position at the ends by two pairs of

wafer- like discs, machined and formed from Lava block, chemically an-

hydrous aluminum silicate, fired to 2000°F after fabrication. The outer-

most discs were drilled for insulated thermocouple (and current) leads,

while the inner ones were recessed to hold the copper strip electrodes,

9





THERMOCOUPLE
\t4SUUfeTOR.

£ult

EL.6CTROD6

THERMO
Couple

SPECIMEN

Fig. 2 Sketch of Copper Electrode with Thermocouple

whose configuration is sketched in Fig. 2. The contact area of the

electrodes was equivalent to the cross-section of the specimens to in-

sure a uniform current density through the specimen. No bonding sub-

stance was used between the electrodes and the specimen. The disc pairs

were drilled and wired together and, under the compressive force of two

diametrically opposed tungsten springs, formed the specimen holder as

shown in Figs. 3 and 4, pages 11 and 12. Additionally, the discs were

drilled to accommodate the heater leads, probe leads, and two glass

aligning rods, all which passed into and through a rubber stopper. This

entire assembly was inserted into a cylindrical pyrex glass container,

sealed off at the bottom end and provided with two vacuum stop-cocks

10













for drawing and releasing vacuum., Sealing was accomplished by wax,

Glyptal, and type N stop-cock lubricant.

Two platinum- platinum and 10% rhodium thermocouples , also serving

as current conductors, were attached to the copper strip electrodes by

pressure fit in the manner shown in Fig. 2. The two pairs of tungsten

probes, shaped under heat and pointed by acid attack, were adjustable

from a point above the stopper and external to the specimen container.

The probes were held in contact with the specimen through their own

spring property, and were kept aligned by two small slotted glass re-

tainers fitted to the specimen.

All voltage lead connections were immersed in an ice bath (0*0),

agitated by a motor-driven stirrer. Voltage measurements were accomplish-

ed by the standard null method using a K-2 potentiometer and Rubicon gal-

vanometer. The four probes located in pairs approximately one-third and

two thirds the distance along the length of the specimen facilitated

simultaneous and duplicate measurements of resistance and Hall voltage,

by toggle selector switching schematically illustrated in Fig. 5 on the

following page.

Adjustments of current from a standard six volt storage battery were

made through a decade resistance box and a slide wire rheostat. Direct

current for the K-2 potentiometer was from two cells of another six volt

storage battery.

The magnetic field was provided by a water-cooled Varian electro-

magnet, Model V-4007, with conical pole inserts. Excessive heating of

the pole faces was prevented by wrapping the specimen container external-

ly with a layer of aluminum foil and several layers of asbestos paper.

13





ice BATH ( °c)

^LMMB

Fig. 5 Schematic of Wiring and Switching.. Arrangement
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Voltage readings were taken only after temperature checks indicat-

ed that thermodynamic conditions had reached steady state. For resisti-

vity measurements, currents of 50 milliamperes and 100 milliamperes were

selected as most suitable, and for Hall effect 100 milliamperes was found

to be appropriate, for reasons to be discussed later.

Both current reversal and magnetic field reversal are normally

necessary to account for all first order gal\anic, thermomagnetic, and

thermoelectric effects. As Lindberg [8\ points out, opposite probes to

measure Hall voltage, if perfectly aligned on equipotential planes at no

field, will measure a voltage which is the sum of the Hall potential and

the thermocouple potential due to Ettinghausen effect such that

V-VHWe (ii)

Since the Hall effect and the Ettinghausen effect are both current de-

pendent, it is impossible to evaluate each separately under the circum-

stances. Lindberg states, however, that in the specific case of german-

ium, investigations have shown that Ettinghausen effect comptises about

five percent of the total and is usually neglected in the evaluations.

Peltier heating and cooling at the points of juncture of the cur-

rent leads and of the specimen initiate a thermal current that brings in-

to the Nernst and Righi-Leduc effects such that

v, = + vH + VE f vN + \J nXm (12)

and by current reversal,

2
Refer to Glossary, Appendix VI, for definitions of effects later
mentioned.
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Since both the Nernst and the Righi-Leduc effects are current indepen-

dent, these potentials can be eliminated by current reversals and combina-

tion of equations (12) and (13).

Another first order effect is the IR drop possible due to probe

misalignment, but, if by design the opposite probes are adjustable for

zero potential, the need for magnetic field reversal in addition to cur-

rent reversal is essentially eliminated. However, the conventional pro-

cedure entails both current and field reversals resulting in four vol-

tage measurements, V , V-, V , and V :

For H and I ,

V
4

= + V w + VE + VN v VRU r VXR (14)

for H and I ,

Va,* -vH - Vfi v\/ N + V'^-Vxk (15)

for H and I ,

V3
8+VH *VE -^n -vRL -V

x (16)

and for H and I

V .
VH - V£ -VM - Vr u + V (17)

It follows that

V»4 + Ve - -^ (18)

Departure from the conventional procedure was necessary because of the

inability to reverse the magnetic field, and hence adjustable probes be-

came not only desirable but mandatory.

This basic technique as described was extensively modified in the

present investigation of cuprous sulfide and bismuth telluride. For

16





Hall voltage measurement s, ample time was allowed for thermal energy

transfer to reach steady state as indicated by thermocouple readings.

With direct current flow, Peltier and Thomson effects prevail to some

small degree. With essentially zero magnetic field,

V, - V
1 (19)

where V , is the net thermocouple effect in the probe- specimen-probe

circuit in the absence of magnetic influence. With the magnetic field

energized, a second voltage reading, V., would include some contributions

3
from Ettinghausen , Ettinghausen-Nernst, Righi-Leduc, Nernst, and Hall

effects, which may be expressed as

V
fc
^ Vi, 4 V t * * VRL + '^ 4 V'h * VTC (20A)

An expeditious second reading minimizes Ettinghausen, Righi-Leduc, and

Nernst effects because of the time requirement for thermal gradients

to form. With the probe pairs located symmetrically in the central por-

tion of the specimen, the thermal current density will consequently be

small and the transverse electric field produced by the Ettinghausen-

Nernst effect can be neglected. Then equation (20A) is simplified to

V*. = Vm + Vtc (20B)

and combining equations (19) and (20B),

^H r-V*~V
t (21)

Current reversal, therefore, provided no effective cancellation of un-

desired components of readings in the Hall effect procedure except to

verify and average data, and disclose any anisotropy of the specimens.

It is imperative, particularly for small Hall voltages, that con-

secutive readings, V
l
and V

2
, be made as rapidly as possible, for a

3
Refer to footnote 2, page 15.
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slow and continuous drift in V will prevail due to the changing See-

beck effect in the probe-specimen circuitry with ionic motion, impurity

changes, and some unavoidable temperature variance. Elapsed time must

be kept at a minimum to produce reliable evaluations.

Only one of the associated effects just considered plays an apprec-

iable part in the resistivity measurement technique were effective cancel-

lation of thermocouple effect is desired to produce the resultant IR drop,

As the data indicates (Appendix IV), the thermocouple effect, V , can

be appreciable and dominating over small IR drops. Current reversal ac-

companied by rapid consecutive readings results in two simple equations,

V*»N/ 1R *VTC (22)

and

V " ^1R "*" V
I (23)

Then,

The general physical arrangement of apparatus is depicted in the

form of photographs, Figs. 6 and 7 on the following two pages.
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3. Results

At each temperature level within the range of interest, resistance

and Hall voltage measurements were made pursuant to the technique des-

cribed in the previous section. Concurrent data required the switching

arrangement and circuitry previously referred to in Fig. 5, and the de-

sign was satisfactory for the purpose intended. The values for resisti-

vities and Hall coefficients evolved from equations (1A) and (5), respect-

ively.

Fig. 8, page 24, displays the temperature dependence of the re-

sistivity of cuprous sulfide, and Fig. 9, page 26, shows the tempera-

ture dependence of resistivity of bismuth telluride. Fig. 10, page 27,

presents the Hall coefficient of bismuth telluride as a function of tem-

perature. Some comparisons are afforded by curves constructed from pub-

lished data as reproduced in Appendix I. Direct comparison of the cup-

rous sulfide resistivity curves is illogical in view of the noted differ-

ences in the percentages of excess sulfur in the various specimens sepa-

rately investigated.

For all temperatures examined, the Hall voltage produced in cup-

rous sulfide was less than one microvolt and not within the capability

of the potentiometer to evaluate. Trial currents of magnitudes up to 1.5

amperes, corresponding to a current density of approximately six amperes

per square centimeter, and reduced specimen thickness failed to produce

Hall voltages of measurable magnitudes. Consequently, for a maximum

field strength of 5700 gauss and a specimen current of 100 milliamperes,

an upper limit of .179 cubic centimeters per coulomb (calculations in

Appendix V) is established as a property of cuprous sulfide in the

21





temperature range from 290°K to 670°K.

Temperature determinations for resistivity were based on the average

value between relevant probes, whereas the nature of Hall effect dictated

the evaluation of average temperatures within the entire specimen (see

Appendix V)

.

As noted in the data (Appendix IV), the magnetic field strength was

recorded at 5700 gauss, measured by gaussmeter. This value corresponds

to the maximum attainable for a pole gap of 4.60 centimeters and maxi-

mum rated coil current of 1.2 amperes. The electromagnet characteristic

curves give an approximate gap field of 6400 gauss for a corresponding

current and for cylindrical pole caps with a five centimeter gap. Some

reduction in field strength must be attributed to the higher flux im-

pedance at the surfaces of the six cadmium-plated spacer inserts required

for appropriate gap adjustment.

22





TABULATED RESULTS

CUPROUS SULFIDE SPECIMEN

Average Temperature Average Electrical Resistivity
T /^

degrees Kelvin ohm centimeters

294 3.68 x 10" 3

327 3.52

339 3.30

353 2.94

365 2.68

374 2.86

401 3.36

413 3.64

433 4.23

444 4.28

471 3.90

501 3.41

526 2.71

547 2.31

577 1.91

596 2.31

616 2.86

641 3.60

666 4.18

-1 3
Hall coefficient < 1.79 x 10 cm per coulomb throughout the

entire temperature range from 294 °K to 666 °K.
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Probes 1-3:

Average Temperature
T

degrees Kelvin

TABULATED RESULTS

BISMUTH TELLURIDE SPECIMEN

Average Electrical Resistivity

ohm centimeters

Hall Coefficient

3""
cm per coulomb

294

370

485

633

1.40 x 10

1.71

1.46

1.14

5.3 x 10

5.3

3.1

1.8

Probes 2-4:

Average Temperature
T

degrees Kelvin

Average Electrical Resistivity Hall Coefficient

ohm centimeters
3*"

cm per coulomb

294

371

485

634

1.44 x 10

1.77

1.50

1.19

-3
3.9 x 10

4.4

3.1

0.9

"f
'
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4. Discussion of Results with Conclusions

E. Hirara ;5j established three conduction phases for cuprous sul-

fide, namely, c( -phase (above 470°C), I -phase (470°C to 110°C), and

V -phase (below 110°C). He further states that in the V -phase,

cuprous sulfide shows the characteristic properties of P-type semiconduct-

ors such as cuprous oxide 1] ; in the
Jj

-phase a phenomenal ionic current

appears; and in the cA, -phase the ionic current becomes negligible.

4
Numerous authors have reported the lower temperature transition. In the

examinations of electrical conductivity of several samples of cuprous

sulfide of varying amounts of excess sulfur
j 5

J
the temperature depen-

dence curves are consistant in quality, but displacements in magnitude

indicate the larger the sulfur excess, the lower the resistivity.

The results of this investigation conform favorably in several

respects. The quality of the resistivity-temperature curve (see Fig. 8,

page 24) is similar to those publicized by other investigators, although

the transition temperature points do not exactly match, particularly the

higher one. The curve resulting from measurements decreases initially

from ambient temperature to a minimum value at about 365°K (92°C) which

is the lower transition temperature separating phase C and phase p> .

The decline in resistivity in the & -phase is attributed to a longer

carrier mean free path, an increase in carrier mobility, and very likely

some ionic conduction.

As the temperature is raised in the -phase, a sudden increase

in resistivity appears as a consequence of ionic motion. The periodic

field of the crystal lattices is disrupted and distorted to the axtc:

4
E. A. Posnjak and H. E. Merwin, P. Rahlfs (1936), M. J. Buerger and
N. W. Buerger (1942, 1944).
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of greatly reducing the mean free path length of carriers as well as

reducing mobility. The rise of resistivity to a maximum value at about

540°K (267°C) exemplifies the phenomenal change in atomic characteristics.

It will be observed that another minimum resistivity point is reached at a

temperature of about 570°K (297°C) which establishes the transition point

between the p -phase and the *, -phase. As the temperature increases

further in the at -phase, resistivity increases in the typical exponential

manner to the melting point (see Fig. 12, page 35).

It can then be concluded that three phases of resistivity is a signi-

ficant property of cuprous sulfide, that the transition points are tempera-

ture dependent and well-defined, and that the variations within each phase

is explainable in terms of particle theory, mobilities, and carrier con-

centrations. Among several independent investigations, variations within

an order of magnitude, or so, are due essentially to differences in element

proportions or excesses, heat treatment effects on atomic structure, in-

evitable introduction of some impurities in handling and experimentation,

and, of course, experimental error.

An examination of previous results J5J indicates that the maximum

value of the Hall coefficient in the case of stoichiometric cuprous

sulfide is on the order of 0.4 cubic centimeters per coulomb, decreasing

appreciably and consistantly with increase in excess sulfur content to 0.1

cubic centimeters per coulomb in specimens of 0.2 percent excess. It can

reasonably be expected, then, that cuprous sulfide of one percent excess

sulfur would further reduce the Hall coefficient to such an extent that

much more sensitive apparatus is required for evaluations. This fact offers

an explanation why a Hall voltage was not observable.
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It has been reported 7 that small deviations from stoichiometric

composition of bismuth telluride have a large effect on its electrical

conductivity. Also, the anisotropy of single crystal samples is de-

3
picted by the fact that conductivity was found to be about 1.5 x 10

ohm centimeters at ambient temperature parallel to the crystal

layers and about 50 ohm centimeters perpendicular to the layers.

The results of the present investigation show close conformity with

published results in respect to the temperature dependence of resistivity

and Hall effect of bismuth telluride (see Figs. 9 and 10, pages 26 and 27).

Regard should be given to the handicap imposed by the relative insensiti-

vity (one microvolt) of the measuring equipment, and reading errors are

potentially large.

In reiteration of an important point, unavoidable temperature

effects, rates of heating and cooling, time at temperature, stability of

chemical combinations, etc., all will affect gross measurements of de-

sired voltages. For this reason, results are non-repeatable in varying

degrees of magnitude. Specifically, data accumulated by temperature re-

duction and temperature elevation cannot be superimposed. Time dependency

is dramatically evident where ionic conduction occurs. The charged ions

migrate to the ends of the specimens under the attracting force of a po-

tential. When the potential is altered or removed, time is required for

these particles to diffuse back to "equilibrium" positions in the atomic

network.

One might conclude that a substance, such as cuprous sulfide or bis-

muth telluride, of moderately high thermoelectric power, i.e. large

Seebeck effect, would have an appreciable Hall effect. Ioffe |6 j
points
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out two relations which clarify this conception in the event that a

material has mixed conductivity - both electron and "hole" carriers:

yc+ +m>~ (25)

( AA ) m - (yU.~) m~

where S is the Seebeck coefficient, and other symbols are as previously

defined. Where only one type of carrier is in prominence, say "holes",

and neglecting any contribution from carriers of the opposite sign,

5 <=< \ (27)

and

Vh^ 7^ + (28)

Inspection of these proportionalities indicates that a high "hole"

concentration will tend to reduce the Hall effect. Both cuprous sulfide

and bismuth telluride have Seebeck coefficients greater than 100 micro-

volts per degree centigrade and, as presented, relatively low Hall co-

efficients.
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5. Problem Considerations and recommendations

One of the principal considerations involved in this experimental

work is the introduction of impurities into the specimen for which the

electrical properties of semiconductors have a great sensitivity. Some

contamination is inevitable, and diffusion into the specimen proceeds at

high rates at elevated temperatures. Compatibility of materials in contact

with the sample should be determined to minimize chemical reaction, parti-

cularly at the elevated temperatures. It is very likely that some copper

atoms did diffuse into the specimens from the electrodes to change the

composition of the material. Some oxidation did occur, with a partial

pressure existing within the container.

Probes composed of the same material as the specimen would be ideal-

ly suited to small voltage measurements in order to eliminate the thermo-

couple effect between dissimilar materials. Indeed, the net effect can

override and obscure the desired voltage measurement of low value. Addition-

ally, non- isothermal conditions at points of contact, due not only to

Ettinghausen effect but to non-uniform heating, is prime consideration in

the adoption of any technique.

Good thermal contact between thermocouples and points of temperature

measurements is not a simple matter, while some contamination and cold

working of thermocouples is unavoidable during installation and results

in small deviations from standard conversion tables. Platinum - platinum

plus ten per cent rhodium is suitable for precise temperature measurements

from zero degrees centigrade upward to above 1000 degrees centigrade be-

cause of the inertness and stability of these materials at high temperature

in oxidizing environments.
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Flexibility in the design of an enclosure for the specimen is usually

detrimental to good vacuum sealing. An alternative to a vacuum would be

an inert gas envelope, if it were not for the disruptive effects of con-

vection currents. Accessibility is essential for sample replacements and

for adjustment of probes, when the design and technique require, and is

another noteworthy problem.

By way of recommendation, experimenters should describe what heat

treatments, if any, that a sample undergoes, for presenting a comprehen-

sive and true evaluation of data on a specific material. Reports of

separate investigations of a like material can be correlated to express

some influence of heat treatment on properties, and such correlations

then become an important source of information on a class of materials

which may be potentially good thermoelements, or which may serve as a

basic substance to be improved by "doping".

Admittedly, the non- isothermal technique in the foregoing investig-

ation precludes optimum accuracy of results. However, such designs based

on simplicity and flexibility permit, at the least, approximate and

cursory evaluations of those discrete properties upon which the effect-

iveness of thermoelectric materials depends, as typified by the "figure

of merit" relation.
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APPENDIX I

MATERIAL DESCRIPTION AND PROPERTIES

Cuprous Sulfide (Cu
?
S ), P-type

Source

:

De script ion

Stanford Research Institute s

Copper and sulfur (1% excess) cast in cylindrical

form in graphite mold. Polycrystalline specimen

cut to dimensions.

3.050 cm x .510 cm x .510 cm

Specimen annealed at about 400°C followed by

slow cooling.

Cuprous Sulfide - General Properties

Dimensions

:

Heat Treatment

:

0.02

I
o

Z
I
o

001

0.00
200 400 600 800 1000 1200

TEMPERATURE - #C

Note: Curve E for Ni doped specimen

Fig. 11 Resistivity Data, Cuprous Sulfide (about 17. excess
sulfur) [2] .
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Fig. 14 Hall Constant, Electrical Conductivity, Mobility, and

Mean Free Path. Length, Cuprous Sulfide (0.2£ excess
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Bismuth Telluride (Bi
2
Te

3
), N-type

Source: Merck and Company, Lot No. 50E-196E

Material furnished in cylindrical form.

Crystal cut to dimensions.

Description

Dimensions:' (Approximate) 3.0 cm x 0.5C cm x 0..50 cm with

long dimension in direction of layers.

Heat Treatment: None, preliminary to run.

Bismuth Telluride - General Properties

£ 2- 103

tf 110'

- S 2-10*

^ 110*

f^*
_y^ /

^S^ ,
_^y^ /

-— -^— <.^^ **»*^ y
. ^^*"*—^"^ s
NJ» s
X,. s

' ^ — f

_^.-""' ^^^ °~2^-^^ o-J

Note: Solid curves for

outer scale, dash-

ed curve for inner

scale.

300 W 500 600 T,°K

Fig. 15 Electrical Conductivity Parallel and Perpendicular to

Layers , Bismuth Telluride (stoichiometric) -7|
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u ^
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Fig. 16 Hall Coefficient, Bismuth Telluride' (stoichiometric) 7
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APPENDIX II

Part A - Temperature Evaluation Technique

Thermal energy transfer for steady conditions is illustrated in

Fig. 17, assuming a uniform temperature at any given cross-section.

Fig. 17 Thermal Energy Transfer in Specimen Increment

d x

3-—

d X*

dQ = 1!/° dx

6<v % = i*
d*

(Assume/O constant with x)

(Assume Qo constant with x)

Neglecting Thomson effect (c( = Tl 3T j , for energy balance,
T ax ;

-Jfe/\^JL dx - I^£ dx - 4R dx =©
A « *• A' v<3x* A'

|!t + I>+^A
ax j^/x

- o
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Let

Then ^ ][ - - cu

5 X
2.

8T - - CL x + C
v

Y ^ - ax1
-t- C t

^ v C a
%

For boundary conditions, assuming symmetrical temperature distribution:

AT , ix ., o.+ „, , ^
* * d *

'C

T-T at X^a^L

Then
c . Q.L c„ = x and

2.
J 3 '

Eliminating C
t

,

5 <\ 2, ^
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For parabolic temperature distribution along the specimen as in Fig„ 18,

Fig. 18

Temperature Distribution
Along Specimen

area

Then T-^(T^-WV-|('VT^)
But

and

q it *

T
5 5

= Tu +TS *TL+A(T^-Tk)

^
)

|
_ 2^ Tl. +• -J- \ o

l. ^u £7 "5" 27
3 3

This temperature derivation results in the average temperature based

on a two-dimensional profile of an assumed parabolic distribution for the

middle one-third section of the specimen, or between x = and x = ?J=
3

41





Area '«4CWT*-T0--!- L l
T*-T^

)/u-|-(^-rc )Then ~r.= %.\-(Tk~
5 5 v 2.

^r = T„ +T— \ T~ I / —- O 13

u

T a .-L *0 4 ;2 TV
O 1_ 6 5 x,

This derivation results in the average temperature for the entire specimen

length from x = to x = L.

Part B - Temperature correlations (platinum versus platinum plus 10%

rhodium thermocouples)

Thermocouple number two was disengaged from the bottom electrode,

repositioned to a midpoint position of the specimen, and shielded from

the radiant heater. Thermal contact was maintained by the leaf spring

action of a short length of tungsten wire, and contact checked by ohmmeter

across thermocouple numbers one and two at each reading. At steady state

conditions, T and T l_ were recorded as follows:

(Thermocouple No. 1)

millivolts °C

T u (Thermocouple No. 2)

millivolts °C

.090 16.0

.183 31.8

.388 63.6

.089 15.8

.326 54.2

.625 97.5
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T (Thermocouple No. 1) T^__ (Thermocouple No. 2)

millivolts °C millivolts °C

.515 82.1

.564 89.0

.693 106.9

.810 122.4

.901 134.1

1.028 150.4

1.068 155.4

1.205 172.2

1.420 198.1

1.600 219.2

1.775 239.4

1.920 255.9

2.135 280.0

2.495 319.6

.795 120.4

.837 125.9

1.051 153.2

1.217 173.6

1.360 190.9

1.465 203.4

1.540 212.2

1.746 236.1

2.098 275.9

2.395 308.7

2.635 334.7

2.790 351.2

3.070 381.0

3.413 416.9

An approximately linear correlation curve, T versus T j_ , was

plotted to a scale of .100 millivolts to the inch and is here represent-

ed in Fig. 19 on the page following, in greatly reduced scale for qualita-

tive information.

Subsequent to the above correlation procedure, thermocouple number

two was repositioned to the end of the specimen to enable check measure-

ments of T and for ascertaining steady state conditions.
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Temperature conversions from millivolts to degrees centigrade was

accomplished for specific levels associated with resistivity and

Hall voltage data, and determinations made in accordance with formulae

developed in Part A of this Appendix.

3.00

n
Z.QO

LOO

|i

\,oo z.oo 'i.oc

cm \ II t volt's

Fig. 19 Thermocouple Correlation

30C

Z&O o

h°

-MOO

A.CO
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APPENDIX III

EXPERIMENTAL ERROR

The experimental procedure entailed rapid consecutive readings

in order to (a) minimize the effect of Peltier heating and cooling and

(b) minimize the effect of Joule heating. As soon as steady-state thermal

conditions were established as recognized by constant end-thermocouple

readings, the specimen current circuit was then closed, followed by imme-

diate voltage measurements. /ith the potential probes located near the

central portion of the specimens, away from the ends, the disturbing in-

fluence on steady state of Peltier heating and cooling was not appreciable,

particularly with low specimen currents of 100 milliamperes or less.

Similarly, Joule heating did not greatly influence the presumed status

of steady state within the time required for necessary readings.

The assumed parabolic temperature distribution, as the best estimate,

did not account for the "shadows" imposed by the glass probe retainers or

the probes with their insulators. With the recorded boundary values, T

and T i , the temperature distribution along the length of the specimen
z

has two reasonable limitations. On the one hand, the limit is a linear

distribution from the ends at Tc to the midpoint at Tl . On the other

hand, the limit is a constant value at Tl along the entire length. In

the former case, simple calculations based on averages of two-dimensional

temperature profiles show the largest difference of about 18 degrees at the

higher end of the temperature range, while, in the latter case, the maxi-

mum difference is about 33 degrees. These differences, of course, decrease

as Tv^ approaches T Q . It is logical to assume that the actual temperature
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distribution did not approach either of these limits and, therefore, the

true average temperatures were much more in accord with the tabulated

values.

With temperature evaluations based upon a parabolic distribution,

as best information in the absence of a complete temperature survey of

each specimen, the equipment sensitivity of one microvolt produced a

possible maximum reading error of one percent for a minimum temperature

reading of about 100 microvolts and is relatively insignificant in this

instance.

Further with regard to equipment sensitivity, the voltages reflect-

ing average resistance were of such magnitudes as to produce a maximum

reading error of about two percent, while the low Hall voltages were, at

best, in 15 percent error increasing to an infinite value as the volt-

ages approached the equipment sensitivity level.

The expediency of using a single calibration curve (Fig. 19, page

44), based upon measurements with the cuprous sulfide specimen in the

holder, was adopted because of the similarity in the thermal conductivities

of the two substances, bismuth telluride having thermal conductivities

-1 -1
only slightly in excess by about 0.01 watts degrees ' centimeters at

the lower end of the temperature range and increasing to about 0.04 watts

degree centimeter at the higher end [3j .

Resistivity evaluations were directly related to the accuracy with

which probe spacing was measured. Multiple averaged measurements pro-

duced the best dimensional data.

As a final consideration, some small transient effects caused a

change in the thermoelectric power between the tungsten probes and the
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specimens (being dissimilar materials), which added to and subtracted

from consecutive voltages, to produce minor error. The specimen

materials cannot be considered stable at elevated temperatures, parti-

cularly in an environment of strong magnetic and electric fields, as

evidenced simply by ionic motion. With a finite time required for conse-

cutive readings, some indeterminate thermocouple effects of a transient

nature in the probe-specimen circuit produced inaccuracies.
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APPENDIX IV

CUPROUS SULFIDE - EXPERIMENTAL DATA

Thermocouple Readings Probes EMF (IR Drop) Pressure
E
i

E
2

V+ V- P

millivolts millivolts microns

.120 .118 1 - 2 .751 -.750 5

.121 .120 3 - 4 .752 -.752 5

.185 .187 1 - 2 1.490 .059 8

.186 .188 3 - 4 1.481 .043 8

.241 .242 1 - 2 1.920 .580 9

.239 .239 3 - 4 1.908 .558 9

,302 .300 1 - 2 2.633 1.431 9

.305 .301 3 - 4 2.619 1,429 9

.364 .361 1 - 2 3.109 2.027 10

.370 .367 3 - 4 3.216 2.116 11

.420 .415 1 - 2 3.516 2.350 10

.421 .417 3 - 4 3.497 2.339 10

.560 .552 1 - 2 7.956 6.592 10

.562 .557 3 - 4 7.823 6.453 10

.627 .620 1 - 2 9.781 8.301 12

.629 .625 3 - 4 9.583 8.093 12

.733 .724 1 - 2 12.285 10.557 11

.735 .727 3 - 4 11.861 10.143 11

.809 .797 1 - 2 13.497 11.747 13

.811 .800 3 - 4 13.527 11.787 14

.980 .970 1 - 2 18.473 16.879

.980 .975 3 - 4 17.980 16.394 12

1.163 1.151 1 - 2 22.003 20.623 12

1.159 1.157 3 - 4 22.778 21.386 11

1.323 1.311 1 - 2 27.320 26.178 10
1.320 1.313 3 - 4 27.920 26.800 10

1.453 1.440 1 - 2 30.267 29.335 9

1.460 1.455 3 - 4 28.384 27.438 10
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CUPROUS SULFIDE - EXPERIMENTAL DATA

Thermocouple Readings
E
l

E
2

millivolts

Probes EMP (IR Drop)
V+ V-

millivolts

Pressure

P
microns

1.597
1.603

1.582
1.587

1 -

3 -

2

4

28.971
25.920

28.189
25.150

10

10

1.725
1.731

1.712
1.718

1 -

3 -

2

4

26.125
17.327

25.195
16.373

9

9

1.889
1.891

1.774
1.775

1 -

3 -

2

4

24.667
16.781

23.521
15.599

9

9

2.090
2.112

2.080
2.100

1 -

3 -

2

4

20.002
14.369

18.548
12.889

10

11

2.333
2.328

2.315
2.320

1 -

3 -

2

4

18.993
13.013

17.271
11.323

10

9

2.751

2.738
2.731
2.723

1 -

3 -

2

4

18.467
14.031

16.665
12.239

11

11

3.117
3.155

3.100
3.135

1 -

3 -

2

4

21.642
17.142

19.648
15.116

10

10

Note: Hall voltage 1 j microvolt throughout entire run, i

Current through specimen: 50 milliamperes

Magnetic : field strength: 5700 gauss

Probe spacing:

Probes 1-2 1.051 centimeters

Probes 3-4 1.063 centimeters

Specimen cross-sectional area (mean): .260 square centimeters
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BISMUTH TELLURIDE - EXPERIMENTAL DATA

Thermocouple
Readings

E
l

E
2

Probes EMF
V+ V-

Pressure

P

Hall Voltage
V+ V-

millivolts milliv<

.583

.578

>lts microns microvolts

.121

.122
.120

.117

1

3 .

2

4

-.562
-.561

10

10

,120
.120

1

1

- 3

3

.000

.006

-.001
-.007 10 6 -6

.118 .120

.120

2

2

- 4

4

.001

.006
.000

-.004 10 5 -4

.446

.449

.444

.447
1

3 -

2.

4

5.805
4.155

7.217
5.554

15

15

.450
.446

1

1

- 3

3

1.719
1.726

1.755
1.750 15 7 -5

.455

.451

2

2 -

4

4

.073

.078

.058

.053 15 5 -5

1.180
1.184

1.175
1.181

1

3

- 2

4

10.679
5.310

11.878
6.496

16

16

1.187
1.179

1

1

- 3

3

5.006
5.011

5.038
5.036 15 5 -2

1.190
1.181

2

2

- 4
4

.053

.057

.042

.039 15 4 -3

2.278
2.285

2.269
2.286

1

3

- 2

4

9.527
5.435

10.467
6.340

15

15

2.289
2.280

1

1

- 3

3

3.334
3.337

3.372
3.371 17 3 -1

2.295
2.289

2

2 -

4

4

.021

.023
.019

.019 17 2
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BISMUTH TELLURIDE - EXPERIMENTAL DATA

Current through specimen: 100 milliamperes

Magnetic field strength: 5700 gauss

Probe spacing:

Probes 1-2 1.03 centimeters

Probes 3-4 0.99 centimeters

Specimen cross-sectional area: 0.25 square centimeters
(approximate)
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APPENDIX V

SAMPLE CALCULATI ONS

CUPROUS SULFIDE SPECIMEN

Thermocouple Readings Probes EMF (IR Drop) Hall Voltage
E
l

E
2

V+ V- V + V -
H H

millivolts millivolts microvolts

.302 .300 1 - 2 2.633 1.431

.305 .301 3 - 4 2.619 1.429 <l < 1

Current through specimen: 50 milliamperes

Magnetic field strength: 5700 gauss

Probe spacing:

Probes 1-2 1 8 051 centimeters

Probes 3-4 1.063 centimeters

Specimen cross-sectional area (mean) ° 0.260 square centimeters

Specimen thickness, d: 0.510 centimeters

T equals 0.302 millivolts, the arithmetic average of the four thermo-

couple readings. Entering the T versus Tj correlation curve with this

value, Tc is established as 0.510 millivolts. From conversion tables
2.

for thermocouples in the case of platinum versus platinum plus ten per-

cent rhodium:

0.302 millivolts equivalent to 50.5°C

0.510 millivolts equivalent to 81.4°C.

By formula developed in Appendix II,

T ^ 8 or 353 °K
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which is the average temperature of the specimen existing between probes,

(24)

For prcbas 1-2,

For probes 3-4,

and for an average value,

\t'

\ \

£R *
(1 I

)

where L 1.057 centimeters, an average value for probe spacing.

Hall's relation states

w .
l

\ ! (5)

Then

•u h

\"7R x \0

or converting from electrostatic units,

for all temperatures within the range of investigation,
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****************************************************^^*^^***1«^**********

BISMUTH TELLURIDE SPECIMEN

jermocouple Readings

E
l

E
2

millivolts

, * r ,

.450
.446

1 - 3

I

Current through specimen:

Magnetic field strength:

Specimen thickness, d:

EMF
V+ V-

millivolts

Hall Voltage
V +
H

V
H"

microvolts

1.719 1.755

1.726 1.750 7 -5

100 milliamperes

5700 gauss

.50 centimeters

ro equals 0.448 millivolts, the average of the two thermocouple read-

ings during the measurements of Hall voltage between probes 1 and 3.

Entering the T versus Tf correlation curve with this value, T t=

o

is established as 0.710 millivolts. From conversion tables for thermo-

couples in the case of platinum versus platinum plus ten percent rhodium:

0.448 millivolt equivalent to 72.4°C

0.710 millivolts equivalent to 109. 1°C

By formula developed in Appendix II,

which is the average temperature of the whole specimen during the

measurement of Hall voltage.

millivolts

millivolts

V
S
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where V is the measured voltage without the electromagnet energized,

and V~ is the measured voltage with the magnetic field of 5700 gauss.

Then, subtracting,

V,,
+
= V„-V, = 7 microvolts

Similarly,

^H =
Ya,*"^t ~ "~ 5" microvolts

The average of the two absolute Hall voltages equals 6 microvolts.

IH (.<lOO CLWpa)(5700 clause)

or converting from electrostatic units,

R, = C-^5,-5 X. \0~
y

Crm3/cOu\ofmb &.T 3'TC V<,

where R^ assumes a negative value for an N-type material.

Calculations for resistivity in the case of bismuth telluride

were made for each set of probes, 1-2 and 3-4, and not averaged

for tabulation.
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APPENDIX VI

GLOSSARY OF GALVANOMAGNETIC, THERMOMAGNETIC, AND THERMAL EFFECTS

Ettinghausen Effect - a thermal gradient normal to a longitudinal

electric current and a transverse magnetic field.

Ettinghausen -Nernst Effect - an electric field normal to the direction

of a longitudinal heat current and a transverse magnetic field.

Hall Effect - an electric field normal to the direction of a longitudinal

electric current and a transverse magnetic field.

Nernst Effect - a change in thermal gradient in the direction of an

electric current in an applied magnetic field.

Righi - Leduc Effect - a thermal gradient normal to the direction of a

longitudinal heat current and a transverse iragnetic field.

Peltier Effect - a change in temperature at the junction of two dis-

similar materials through which an electric current passes.

Seebeck Effect - an EMF in an electric circuit with two junctions at

different temperatures and of dissimilar materials.

Thomson Effect - the generation or absorption of heat in a material

by the passage of an electric current along a temperature gradient.
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